Widecombe-in-the-Moor Primary School Mathematics Curriculum Plan Years 1-6

Intent

Maths at Widecombe is a journey and long-term goal, achieved through exploration, clarification, practice and application over time. At each stage of learning, children should be able to demonstrate a deep, conceptual understanding of a topic and be able to build on this over time.

There are 3 levels of learning:
Shallow learning: surface, temporary, often lost
Deep learning: it sticks, can be recalled and used
Deepest learning: can be transferred and applied in different contexts
The deep and deepest levels are what we are aiming for by teaching maths using the Mastery approach. The intent of our mathematics curriculum is to teach a rich engaging and balanced curriculum which builds on previously acquired knowledge and skills. Children will become fluent in the fundamentals of mathematics then develop their skills to be able to reason and problem solve. They will develop resilience and self-confidence when faced with mathematical challenges and have the chance to believe in themselves as mathematicians. They will embrace their mistakes as part of the learning process and value the importance of effort. They will recognise that mathematics underpins much of our daily lives and make connections between what is learnt in the classroom and the wider world as well as applying their mathematical knowledge to other subjects.

Implementation

We ensure our children have access to a high quality maths curriculum that is both challenging and enjoyable.

Objects, pictures, words, numbers and symbols are displayed in each class. The mastery approach incorporates all of these to help children explore and demonstrate mathematical ideas, enrich their learning experience and deepen understanding. Together, these elements help cement knowledge so pupils truly understand what they have learnt.
All pupils, when introduced to a key new concept, will have the opportunity to build competency in this topic by taking this approach. Pupils are encouraged to physically represent mathematical concepts. Objects and pictures are used to demonstrate and visualise abstract ideas, alongside numbers and symbols.

Concrete - children have the opportunity to use concrete objects and manipulatives to help them understand and explain what they are doing.
Pictorial - children then build on this concrete approach by using pictorial representations, which can then be used to reason and solve problems.
Abstract - With the foundations firmly laid, children can move to an abstract approach using numbers and key concepts with confidence.
Short term planning makes use of resources from the White Rose Maths Hub, Abacus, NRICH and NCETM. A detailed, structured curriculum is mapped out across all phases ensuring continuity and a calculation policy is used to ensure a consistent approach. Each unit of mathematics is taught in a sequence which has been planned based on formative assessment of what the children already know. Elicitation tasks are carefully designed by the teachers at the start of every unit to inform the planning
cycle. New content is taught through small steps to support children in their learning journey which progresses into supported and independent practise for children to secure their new skills. Teachers use differentiated questioning to elicit feedback from all students to expose and address any misconceptions in learning. Where these misconceptions are seen, they are readdressed through supported practice to enable all children to succeed. Concrete and pictorial representations of mathematics are carefully chosen to help build procedural and conceptual knowledge. Additional models, visuals and manipulatives are used to scaffold children who may struggle to grasp concepts and challenges are provided for those who grasp them quickly. These focus on breadth and depth of understanding and the children are expected to apply their knowledge in challenging scenarios. Number talk is used within lessons to give children the opportunity to explore the concepts and rationale behind the calculations and arithmetic they are learning. The opportunity to expand on their thinking and share reasoning will deepen and develop their conceptual understanding. Responses are expected in full sentences using mathematical vocabulary and sentence stems are regularly used to encourage this.
Our planning ensures we fully develop independent learners with inquisitive minds who have secure mathematical foundations and an interest in wanting to get better and do the challenges set.

National Curriculum aims: see full national curriculum objectives

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Progressive curriculum plan
Number and place value

Counting					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of 4, 8, 50 and 100;	count in multiples of 6, 7, 9, 25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		

Comparing numbers

use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100 ; use <, > and = signs	compare and order numbers up to 1000	order and compare numbers beyond 1000 compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
Identifying, representing and estimating numbers					
identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		
Reading and writing numbers (including Roman numerals)					
read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1 000 in numerals and in words	read Roman numerals to 100 (। to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Comparing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
		tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks (copied from Measurement)		read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	
Understanding place value					
	recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers) identify the value of each digit to three decimal places and multiply and divide numbers by 10, 100 and 1000 where the answers are up to three decimal places (copied from Fractions)
			find the effect of dividing a oneor two-digit number by 10 and 100, identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions)		
Rounding					
			round any number to the nearest $10,100 \text { or } 1000$	round any number up to 1000 000 to the nearest $10,100,1$ 000, 10000 and 100000	round any whole number to a required degree of accuracy
			round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)

Addition and subtraction					
Number bonds					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Mental calculation					
add and subtract one-digit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				use their knowledge of the order of operations to carry out calculations involving the four operations
Written methods					
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
Inverse operations, estimating and checking answers					
	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Problem solving

solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	solve problems with addition and subtraction: $*$		
using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods			
	solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)		

solve problems, including

 missing number problems, using number facts, place value, and more complex addition and subtractionsolve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Solve problems involving addition, subtraction, multiplication and division

Multiplication and division					
Multiplication and division facts					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of 4, 8 , 50 and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
Mental calculation					
		write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers
	show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot		recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	multiply and divide whole numbers and those involving decimals by 10,100 and 1000	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3 / 8}$) (copied from Fractions)

Written calculation				
calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division ((\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
			divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
				use written division methods in cases where the answer has up to two decimal places (copied from Fractions)
Properties of numbers: multiples, factors, primes, square and cube numbers				
		recognise and use factor pairs and commutativity in mental calculations (repeated)	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	identify common factors, common multiples and prime numbers use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
			know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	
			establish whether a number up to 100 is prime and recall prime numbers up to 19	
			recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	calculate, estimate and compare volume of cubes and cuboids using standard units, inc/uding centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units such as mm^{3} and km^{3} (copied from Measures)

					use their knowledge of the order of operations to carry out calculations involving the four operations
Inverse operations, estimating and checking answers					
		estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)		use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
Problem solving					
solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	solve problems involving addition, subtraction, multiplication and division
				solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

Fractions, decimals and percentages
Counting in fractional steps

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Pupils should count in fractions up to 10, starting from any number and using the1/2 and 2/4 equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths		

Recognising fractions

recognise, find and name a half as one of two equal parts of an object, shape or quantity	recognise, find, name and write fractions $1 / 1,1 / 2, / 4$ length, shape, set of objects or quantity

recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators
recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten
recognise and use thousandths and relate them to tenths hundredths and decimal equivalents (appears also in Equivalence)

recognise, find and name a quarter as one of four equal parts of an object, shape or quantity		recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10 . recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators			
Comparing fractions					
		compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1
Comparing decimals					
			compare numbers with the same number of decimal places up to two decimal places	read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places
Rounding including decimals					
			round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
Equivalence					
	```write simple fractions e.g. '/ % of 6 \(=3\) and recognise the equivalence of \({ }^{2} /\) and \(1 /\).```	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
			recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions (e.g. 0.71 $={ }^{71} /{ }_{100}$ )   recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }_{8}{ }_{8}$ )
			recognise and write decimal equivalents to $1 /{ }_{4} ;{ }^{1} /{ }_{2} ;{ }^{3}{ }_{4}$	recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
Addition and subtraction of fractions					
		add and subtract fractions with the same denominator within one whole (e.g. $I_{7}+I_{7}={ }_{7} / 7$ )	add and subtract fractions with the same denominator	add and subtract fractions with the same denominator and multiples of the same number	add and subtract fractions with different denominators and mixed numbers, using the



			solve simple measure and   money problems involving   fractions and decimals to two   decimal places.	solve problems which require   knowing percentage and decimal   equivalents of $1,1,1,1,2,4, ~$   a   and those with a denominator of
a multiple of 10 or 25.				



Algebra					
Equations					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction)		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically



## Measurement

## Comparing and estimating

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6


compare, describe and solve practical problems for: lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] mass/weight [e.g. heavy/light, heavier than, lighter than] capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using >, < and $=$		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres ( $\mathrm{cm}^{2}$ ) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes (also included in measuring)   estimate volume (e.g. using 1 $\mathrm{cm}{ }^{3}$ blocks to build cubes and cuboids) and capacity (e.g. using water)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed ( $\mathrm{cm}^{3}$ ) and cubic metres ( $\mathrm{m}^{3}$ ), and extending to other units such as $\mathrm{mm}^{3}$ and $\mathrm{km}^{3}$.
sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			

## Measuring and calculating

measure and begin to record the following:   * lengths and heights   * mass/weight   * capacity and volume   * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature ( ${ }^{\circ} \mathrm{C}$ ); capacity (litres $/ \mathrm{ml}$ ) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract: lengths ( $\mathrm{m} / \mathrm{cm} / \mathrm{mm}$ ); mass (kg/g); volume/capacity ( $1 / \mathrm{ml}$ )	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
		measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa
recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds ( $£$ ) and pence ( p ); combine amounts to make a particular value   find different combinations of coins that equal the same amounts of money	add and subtract amounts of money to give change, using both $£$ and $p$ in practical contexts			


	solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change				
			find the area of rectilinear shapes by counting squares	calculate and compare the area of squares and rectangles including using standard units, square centimetres ( $\mathrm{cm}^{2}$ ) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes   recognise and use square numbers and cube numbers, and the notation for squared ( ${ }^{2}$ ) and cubed ( ${ }^{3}$ ) (copied from Multiplication and Division)	calculate the area of parallelograms and triangles
					calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres ( $\mathrm{cm}^{3}$ ) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [e.g. $\mathrm{mm}^{3}$ and $\mathrm{km}^{3}$ ].
					recognise when it is possible to use formulae for area and volume of shapes

## Telling the time

## tell the time to the hour and half <br> past he hour and draw the hands on a clock face to show

 these times.recognise and use language relating to dates, including days of the week, weeks, months and years
tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.
know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)
tell and write the time from an Roman numerals from I to XII and 12-hour and 24-hour clock

## estimate and read

time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)

read, write and convert time   between analogue and digital 12   and 24-hour clocks (appears also   in Converting)		
solve problems involving   converting from hours to minutes;   minutes to seconds; years to   months; weeks to days (appears   also in Converting)	solve problems involving   converting between units of time	


	know the number of minutes in an hour and the number of hours in a day.   (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
			read, write and convert time between analogue and digital 12 and 24 -hour clocks (appears also in Converting)	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Measuring and Calculating)
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Telling the Time)	understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	convert between miles and kilometres


Geometry: Properties of shape					
Identifying shapes and their properties					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Recognise and name common 2D and 3-D shapes, including:   * 2-D shapes [e.g. rectangles (including squares), circles and	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line		identify lines of symmetry in 2-D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2D representations	recognise, describe and build simple 3-D shapes, including making nets (appears also in Drawing and Constructing)
* 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
	identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]				
Drawing and constructing					
		draw 2-D shapes and make 3-D shapes using modelling		draw given angles, and measure them in degrees ( ${ }^{\circ}$ )	draw 2-D shapes using given dimensions and angles


	materials; recognise 3-D shapes in different orientations and describe them	complete a simple symmetric figure with respect to a specific line of symmetry		recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)
Comparing and classifying				
compare and sort common 2-D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadriaterals, and regular polygons
			distinguish between regular and irregular polygons based on reasoning about equal sides and angles	
Angles				
	recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
	identify right angles, recognise that two right angles make a halfturn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify:   * angles at a point and one whole turn (total $360^{\circ}$ )   * angles at a point on a straight line and $1 / 2$ a turn (total $180^{\circ}$ ) other multiples of $90^{\circ}$	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
	identify horizontal and vertical lines and pairs of perpendicular and parallel lines			


Geometry: Position and direction					
Position, direction and movement					
Year 1 describe position, direction andmovement, including half, quarterand three-quarter turns. and three-quarter turns.	Year 2	Year 3	Year 4	Year 5	Year 6
	use mathematical vocabulary to describe position, direction and movement including movement		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using	describe positions on the full coordinate grid (all four quadrants)
	as a turn and in terms of right angles for quarter, half and three clockwise)		describe movements between given unit to the left/right and up/down	changed	draw and translate simple shapes on the coordinate plane, and reflect them in the axes
			plot specified points and draw sides to complete a given polygon		

## Pattern

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


Statistics					
Interpreting, constructing and presenting data					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
	ask and answer questions about totalling and comparing categorical data				
Solving problems					
		solve one-step and two-step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average

## Impact

Children at Widecombe will develop confidence, understanding and enjoyment in mathematics along with a comprehensive set of problem-solving skills and strategies to take with them to the next stage of their education. They will be engaged and challenged and able to quickly recall facts and techniques. They will use mathematics effectively as a tool in a wide variety of situations and will be able to present a justification or argument relating to a problem using mathematical language. They will understand the relevance of what they are learning in relation to real world concepts and develop a sense of curiosity about the subject.

