Widecombe-in-the-Moor Primary School: Number \& Calculation policy: Years 5 \& 6

Rationale

It is our intent is to provide children with clear methods and strategies in order to build secure foundations in calculation. In Years 5 \& 6 children will continue to develop fluency, accuracy and an ability to select appropriate and efficient methods when using the four operations: $+/-/ X / \div$. Children in these year groups will work with whole numbers and decimals; applying skills to problem solving, reasoning their choices with confidence.

Staff will begin units of work with an elicitation task. These tasks will include 2 questions; fluency, reasoning and problem solving being at the heart of these tasks. These tasks will provide staff with a clear picture of children's knowledge and skills and then allow staff to meet need and extend children's learning from their individual starting points. They will be used again at the end of a unit of work, enabling staff to see a clear picture of progress and mastery of given areas.

Key Vocabulary:

round, decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

	15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50=$ \square $\begin{aligned} & 40 \rightarrow \div \div+\div 5 \rightarrow+\div ? \\ & 40 \rightarrow+5 \rightarrow+5 \\ & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals by 10, 100 and 1,000	Understand division by 10 using exchange. 2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths. Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division using exchange on a place value grid. 1.5 is 1 one and 5 tenths. This is equivalent to 10 tenths and 50 hundredths. 10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5 hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths. $1 \cdot 5 \div 10=0.15$	Understand the movement of digits on a place value grid.$0.85 \div 10=0.085$O \bullet Tth Hth Thth 8 \bullet 5 0 \bullet 0 8 $8.5 \div 100=0.085$

Selecting mental methods for larger numbers where appropriate	$2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$			Use a bar model to support thinking in addition problems. I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to m interpretations of a more than one oper different results.	del di cula on.	rent with lore	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$
Other representations and methods may include:					
Representing additions				Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable.

	$\underset{\text { computer game }}{\square}$ $\underset{\text { puzzle book }}{\rightleftarrows}$	
Subtracting decimals	$£ 2.95-£ 1.25=$	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$ $\left.\begin{array}{rccc}\mathrm{O} & \cdot & \text { Tth } & \text { Hth } \\ \hline 3 \cdot & \text { Thth } \\ - & 9 & 2 & 1 \\ 3 & \cdot & 7 & 5\end{array}\right) 0$
Subtracting mentally with larger numbers	Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square 150 800 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10. $10,000-500=?$
Other representations and methods may include:		
Checking strategies and representing subtractions	Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations.

	$\begin{array}{r} 34 \\ \times \quad 27 \\ \hline 23834 \times 7 \end{array}$	$\begin{array}{r} 34 \\ \times \quad 27 \\ \hline 238 \\ 64 \times 7 \\ 680 \\ \hline \end{array}$	$\begin{array}{r} 34 \\ \times \quad 27 \\ \hline 23834 \\ 680 \\ \hline 918 \\ \hline 1 \end{array}$							
Multiplying up to 4-digits by 2-digits	Use column multiplication, ensuring understanding of place value at each stage.$\begin{array}{rrrrrll} & 1 & 2 & 7 & 4 \\ \times & & 3 & 2 \\ \times & & & & \\ \hline & 2 & 5 & 4 & 8 \\ 3 & 8 & 2 & 2 & 0 \\ \hline 4 & 0 & 7 & 6 & 8 \\ \hline 1 & & & 1,274 \times 2 \\ & 1,274 \times 30 & \\ \hline \end{array}$									
Multiplying decimals	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0 \cdot 3=1 \cdot 2 \\ & 4 \times 0 \cdot 03=0 \cdot 12 \\ & 20 \times 5=100 \\ & 20 \times 0 \cdot 5=10 \\ & 20 \times 0 \cdot 05=1 \end{aligned}$ Find families of facts from a known multiplication.									ultiplying decimals.

Other representations and methods may include:

Understanding factors	Use Cuisenaire, cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern? Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Understanding factors	Use equipment to explore different factors of a number. $24 \div 4=6$ $30 \div 4=7$ remainder 2 4 is a factor of 24 but is not a factor of 30.	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Division	All children will be taught: short and lo	ng division methods	
Dividing up to four digits by a	Explore grouping using place value equipment.	Use place value equipment on a place value grid alongside short division.	Use short division for up to 4-digit numbers divided by a single digit.

			3 217 9 $-\quad 6$ 1$\begin{array}{r} 3 \\ \hline 21 \\ \hline 798 \\ -\quad 630 \\ \hline 1668 \\ -\quad 68 \\ \hline \end{array}$ Divisions with a remainder explored in problem-solving contexts.
Other representations and methods may include:			
Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third. 	Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$
Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14=?$ 1.260 \square \square $1,260 \div 2=630$ $\begin{aligned} & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$	Use factors and repeated division where appropriate.

